- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Rubinfeld, R. (2)
-
Yodpinyanee, A. (2)
-
Alaikbarpour, A. (1)
-
Bosboom, J. (1)
-
Demaine, E.D. (1)
-
Demaine, M.L. (1)
-
Gouleakis, T. (1)
-
Hesterberg, A. (1)
-
Indyk, P. (1)
-
Mahabadi, S. (1)
-
Manurangsi, P. (1)
-
Peebles, J. (1)
-
Ullman, J. (1)
-
Vakilian, A. (1)
-
Yodpinyanee, A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we consider the sample complexity required for testing the monotonicity of distributions over partial orders. A distribution p over a poset is monotone if, for any pair of domain elements x and y such that x ⪯ y, p(x) ≤ p(y). To understand the sample complexity of this problem, we introduce a new property called bigness over a finite domain, where the distribution is T-big if the minimum probability for any domain element is at least T. We establish a lower bound of Ω(n/ log n) for testing bigness of distributions on domains of size n. We then build on these lower bounds to give Ω(n/ log n) lower bounds for testing monotonicity over a matching poset of size n and significantly improved lower bounds over the hypercube poset. We give sublinear sample complexity bounds for testing bigness and for testing monotonicity over the matching poset. We then give a number of tools for analyzing upper bounds on the sample complexity of the monotonicity testing problem. The previous lower bound for testing Monotonicity ofmore » « less
-
Indyk, P.; Mahabadi, S.; Rubinfeld, R.; Ullman, J.; Vakilian, A.; Yodpinyanee, A. (, 20th International Workshop on Approximation Algorithms for Combinatorial Optimization Problem (APPROX 2017))We study the Fractional Set Cover problem in the streaming model. That is, we consider the relaxation of the set cover problem over a universe of n elements and a collection of m sets, where each set can be picked fractionally, with a value in [0,1]. We present a randomized (1+a)-approximation algorithm that makes p passes over the data, and uses O(polylog(m,n,1/a) (mn^(O(1/(pa)))+n)) memory space. The algorithm works in both the set arrival and the edge arrival models. To the best of our knowledge, this is the first streaming result for the fractional set cover problem. We obtain our results by employing the multiplicative weights update framework in the streaming settings.more » « less
-
Bosboom, J.; Demaine, E.D.; Demaine, M.L.; Hesterberg, A.; Manurangsi, P.; Yodpinyanee, A. (, Journal of information processing)We prove the computational intractability of rotating and placing n square tiles into a 1 × n array such that adjacent tiles are compatible—either equal edge colors, as in edge-matching puzzles, or matching tab/pocket shapes, as in jigsaw puzzles. Beyond basic NP-hardness, we prove that it is NP-hard even to approximately maximize the number of placed tiles (allowing blanks), while satisfying the compatibility constraint between nonblank tiles, within a factor of 0.9999999702. (On the other hand, there is an easy (1/2)-approximation.) This is the first (correct) proof of inapproximability for edge-matching and jigsaw puzzles. Along the way, we prove NP-hardness of distinguishing, for a directed graph on n nodes, between having a Hamiltonian path (length n − 1) and having at most 0.999999284 (n − 1) edges that form a vertex-disjoint union of paths. We use this gap hardness and gap-preserving reductions to establish similar gap hardness for 1 × n jigsaw and edge-matching puzzles.more » « less
An official website of the United States government

Full Text Available